Bacterial migration along solid surfaces.
نویسندگان
چکیده
An in vitro system was developed to study the migration of uropathogenic Escherichia coli strains. In this system an aqueous agar gel is placed against a solid surface, allowing the bacteria to migrate along the gel/solid surface interface. Bacterial strains as well as solid surfaces were characterized by means of water contact angle and zeta potential measurements. When glass was used as the solid surface, significantly different migration times for the strains investigated were observed. Relationships among the observed migration times of six strains, their contact angles, and their zeta potentials were found. Relatively hydrophobic strains exhibited migration times shorter than those of hydrophilic strains. For highly negatively charged strains shorter migration times were found than were found for less negatively charged strains. When the fastest-migrating strain with respect to glass was allowed to migrate along solid surfaces differing in hydrophobicity and charge, no differences in migration times were found. Our findings indicate that strategies to prevent catheter-associated bacteriuria should be based on inhibition of bacterial growth rather than on modifying the physicochemical character of the catheter surface.
منابع مشابه
Micro-Patterned Surfaces That Exploit Stigmergy to Inhibit Biofilm Expansion
Twitching motility is a mode of surface translocation that is mediated by the extension and retraction of type IV pili and which, depending on the conditions, enables migration of individual cells or can manifest as a complex multicellular collective behavior that leads to biofilm expansion. When twitching motility occurs at the interface of an abiotic surface and solidified nutrient media, it ...
متن کاملQuantitatively predicting bacterial adhesion using surface free energy determined with a spectrophotometric method.
Bacterial adhesion onto solid surfaces is of importance in a wide spectrum of problems, including environmental microbiology, biomedical research, and various industrial applications. Despite many research efforts, present thermodynamic models that rely on the evaluation of the adhesion energy are often elusive in predicting the bacterial adhesion behavior. Here, we developed a new spectrophoto...
متن کاملMicropatterned surfaces for reducing the risk of catheter-associated urinary tract infection: an in vitro study on the effect of sharklet micropatterned surfaces to inhibit bacterial colonization and migration of uropathogenic Escherichia coli.
BACKGROUND AND PURPOSE Catheter-associated urinary tract infection (CAUTI) is the most common device-associated infection and can result in serious medical consequences. We studied the efficacy of a novel microscopic physical surface modification (Sharklet) for preventing bacterial colonization and migration of uropathogenic Escherichia coli on silicone elastomer. MATERIALS AND METHODS In vit...
متن کاملSucceed escape: Flow shear promotes tumbling of Escherichia colinear a solid surface
Understanding how bacteria move close to a surface under various stimuli is crucial for a broad range of microbial processes including biofilm formation, bacterial transport and migration. While prior studies focus on interactions between single stimulus and bacterial suspension, we emphasize on compounding effects of flow shear and solid surfaces on bacterial motility, especially reorientation...
متن کاملHydrodynamic surface interactions enable Escherichia coli to seek efficient routes to swim upstream.
Escherichia coli in shear flow near a surface are shown to exhibit a steady propensity to swim towards the left (within the relative coordinate system) of that surface. This phenomenon depends solely on the local shear rate on the surface, and leads to cells eventually aligning and swimming upstream preferentially along a left sidewall or crevice in a wide range of flow conditions. The results ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 58 5 شماره
صفحات -
تاریخ انتشار 1992